Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Sci Rep ; 14(1): 9123, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643168

ABSTRACT

Multimodal spectral imaging offers a unique approach to the enhancement of the analytical capabilities of standalone spectroscopy techniques by combining information gathered from distinct sources. In this manuscript, we explore such opportunities by focusing on two well-known spectral imaging techniques, namely laser-induced breakdown spectroscopy, and hyperspectral imaging, and explore the opportunities of collaborative sensing for a case study involving mineral identification. In specific, the work builds upon two distinct approaches: a traditional sensor fusion, where we strive to increase the information gathered by including information from the two modalities; and a knowledge distillation approach, where the Laser Induced Breakdown spectroscopy is used as an autonomous supervisor for hyperspectral imaging. Our results show the potential of both approaches in enhancing the performance over a single modality sensing system, highlighting, in particular, the advantages of the knowledge distillation framework in maximizing the potential benefits of using multiple techniques to build more interpretable models and paving for industrial applications.

2.
Neurobiol Dis ; 195: 106500, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614275

ABSTRACT

Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.


Subject(s)
Autonomic Pathways , Spinal Cord Injuries , Spinal Cord Injuries/immunology , Spinal Cord Injuries/physiopathology , Humans , Animals , Autonomic Pathways/immunology , Autonomic Nervous System/physiopathology , Autonomic Nervous System/immunology
3.
BMC Med Inform Decis Mak ; 24(1): 95, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622703

ABSTRACT

This study presents a workflow for identifying and characterizing patients with Heart Failure (HF) and multimorbidity utilizing data from Electronic Health Records. Multimorbidity, the co-occurrence of two or more chronic conditions, poses a significant challenge on healthcare systems. Nonetheless, understanding of patients with multimorbidity, including the most common disease interactions, risk factors, and treatment responses, remains limited, particularly for complex and heterogeneous conditions like HF. We conducted a clustering analysis of 3745 HF patients using demographics, comorbidities, laboratory values, and drug prescriptions. Our analysis revealed four distinct clusters with significant differences in multimorbidity profiles showing differential prognostic implications regarding unplanned hospital admissions. These findings underscore the considerable disease heterogeneity within HF patients and emphasize the potential for improved characterization of patient subgroups for clinical risk stratification through the use of EHR data.


Subject(s)
Heart Failure , Multimorbidity , Humans , Comorbidity , Heart Failure/diagnosis , Heart Failure/epidemiology , Cluster Analysis , Chronic Disease
4.
Appl Spectrosc ; : 37028241246545, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629426

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) imaging has now a well-established position in the subject of spectral imaging, leveraging multi-element detection capabilities and fast acquisition rates to support applications both at academic and technological levels. In current applications, the standard processing pipeline to explore LIBS imaging data sets revolves around identifying an element that is suspected to exist within the sample and generating maps based on its characteristic emission lines. Such an approach requires some previous expert knowledge both on the technique and on the sample side, which hinders a wider and more transparent accessibility of the LIBS imaging technique by non-specialists. To address this issue, techniques based on visual analysis or peak finding algorithms are applied on the average or maximum spectrum, and may be employed for automatically identifying relevant spectral regions. Yet, maps containing relevant information may often be discarded due to low signal-to-noise ratios or interference with other elements. In this context, this work presents an agnostic processing pipeline based on a spatial information ratio metric that is computed in the Fourier space for each wavelength and that allows for the identification of relevant spectral ranges in LIBS. The results suggest a more robust and streamlined approach to feature extraction in LIBS imaging compared with traditional inspection of the spectra, which can introduce novel opportunities not only for spectral data analysis but also in the field of data compression.

5.
Magn Reson Med ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523462

ABSTRACT

PURPOSE: To develop an open-source prototype of myocardial T1 mapping (Open-MOLLI) to improve accessibility to cardiac T1 mapping and evaluate its repeatability. With Open-MOLLI, we aim to enable faster implementation and testing of sequence modifications and to facilitate inter-scanner and cross-vendor reproducibility studies. METHODS: Open-MOLLI is an inversion-recovery sequence using a balanced SSFP (bSSFP) readout, with inversion and triggering schemes based on the 5(3)3 MOLLI sequence, developed in Pulseq. Open-MOLLI and MOLLI sequences were acquired in the ISMRM/NIST phantom and 21 healthy volunteers. In 18 of those subjects, Open-MOLLI and MOLLI were repeated in the same session (test-retest). RESULTS: Phantom T1 values were comparable between methods, specifically for the vial with reference T1 value most similar to healthy myocardium T1 (T1vial3 = 1027 ms): T1MOLLI = 1011 ± 24 ms versus T1Open-MOLLI = 1009 ± 20 ms. In vivo T1 estimates were similar between Open-MOLLI and MOLLI (T1MOLLI = 1004 ± 33 ms vs. T1Open-MOLLI = 998 ± 52 ms), with a mean difference of -17 ms (p = 0.20), despite noisier Open-MOLLI weighted images and maps. Repeatability measures were slightly higher for Open-MOLLI (RCMOLLI = 3.0% vs. RCOpen-MOLLI = 4.4%). CONCLUSION: The open-source sequence Open-MOLLI can be used for T1 mapping in vivo with similar mean T1 values to the MOLLI method. Open-MOLLI increases the accessibility to cardiac T1 mapping, providing also a base sequence to which further improvements can easily be added and tested.

6.
Front Immunol ; 15: 1354479, 2024.
Article in English | MEDLINE | ID: mdl-38444856

ABSTRACT

Introduction: The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods: In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results: We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-ß1 (M(IL-10+TGF-ß1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-ß1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-ß1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-ß1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion: Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.


Subject(s)
Interleukin-10 , Spinal Cord Injuries , Humans , Animals , Mice , Transforming Growth Factor beta1 , Proteomics , Secretome , Spinal Cord Injuries/therapy
7.
J Tissue Eng ; 15: 20417314231203824, 2024.
Article in English | MEDLINE | ID: mdl-38343771

ABSTRACT

Mesenchymal stem cell-based therapies have been studied for spinal cord injury (SCI) treatment due to their paracrine action upon damaged tissues. MSCs neuroregenerative role may relate to the contents of their secretome in anti-inflammatory cytokines and growth-permissive factors. We propose using the secretome of MSCs isolated from the adipose tissue-adipose tissue-derived stem cells (ASCs) as a cell-free based therapy for SCI. In vivo studies were conducted in two SCI models, Xenopus laevis and mice, after complete spinal cord transection. Our results on both models demonstrated positive impacts of ASC secretome on their functional recovery which were correlated with histopathological markers of regeneration. Furthermore, in our mice study, secretome induced white matter preservation together with modulation of the local and peripheral inflammatory response. Altogether, these results demonstrate the neuroregenerative and potential for inflammatory modulation of ASC secretome suggesting it as a good candidate for cell-free therapeutic strategies for SCI.

8.
MAGMA ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393541

ABSTRACT

OBJECTIVE: Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (OptEEM); 2) spherical codes (OptSC); 3) random (RandomTRUNC). MATERIALS AND METHODS: Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively. RESULTS: Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). RandomTRUNC performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (OptEEM: up to 5% error; OptSC: up to 7% error) and peak height (OptEEM: up to 8% error; OptSC: up to 11% error) the most affected. CONCLUSION: The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.

9.
Sensors (Basel) ; 23(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38005520

ABSTRACT

Evaluating the efficiency of surface treatments is a problem of paramount importance for the cork stopper industry. Generically, these treatments create coatings that aim to enhance the impermeability and lubrification of cork stoppers. Yet, current methods of surface analysis are typically time-consuming, destructive, have poor representativity or rely on indirect approaches. In this work, the use of a laser-induced breakdown spectroscopy (LIBS) imaging solution is explored for evaluating the presence of coating along the cylindrical surface and in depth. To test it, several cork stoppers with different shaped areas of untreated surface were analyzed by LIBS, making a rectangular grid of spots with multiple shots per spot, to try to identify the correspondent shape. Results show that this technique can detect the untreated area along with other features, such as leakage and holes, allowing for a high success rate of identification and for its performance at different depths, paving the way for future industry-grade quality control solutions with more complex surface analysis.

10.
Magn Reson Imaging ; 102: 141-150, 2023 10.
Article in English | MEDLINE | ID: mdl-37343905

ABSTRACT

PURPOSE: The consensus for the clinical implementation of arterial spin labeling (ASL) perfusion imaging recommends a segmented 3D Gradient and Spin-Echo (GRASE) readout for optimal signal-to-noise-ratio (SNR). The correction of the associated susceptibility-induced geometric distortions has been shown to improve diagnostic precision, but its impact on ASL data has not been systematically assessed and it is not consistently part of pre-processing pipelines. Here, we investigate the effects of susceptibility-induced distortion correction on perfusion imaging by pseudo-continuous ASL (pCASL) with a segmented 3D GRASE readout. METHODS: Data acquired from 28 women using pCASL with 3D GRASE at 3T was analyzed using three pre-processing options: without distortion correction, with distortion correction, and with spatial smoothing (without distortion correction) matched to control for blurring effects induced by distortion correction. Maps of temporal SNR (tSNR) and relative perfusion were analyzed in eight regions-of-interest (ROIs) across the brain. RESULTS: Distortion correction significantly affected tSNR and relative perfusion across the brain. Increases in tSNR were like those produced by matched spatial smoothing in most ROIs, indicating that they were likely due to blurring effects. However, that was not the case in the frontal and temporal lobes, where we also found increased relative perfusion with distortion correction even compared with matched spatial smoothing. These effects were found in both controls and patients, with no interactions with the participant group. CONCLUSION: Correction of susceptibility-induced distortions significantly impacts ASL perfusion imaging using a segmented 3D GRASE readout, and this step should therefore be considered in ASL pre-processing pipelines. This is of special importance in clinical studies, reporting perfusion across ROIs defined on relatively undistorted images and when conducting group analyses requiring the alignment of images across different subjects.


Subject(s)
Brain , Imaging, Three-Dimensional , Humans , Female , Imaging, Three-Dimensional/methods , Brain/diagnostic imaging , Magnetic Resonance Angiography/methods , Spin Labels , Perfusion Imaging , Cerebrovascular Circulation , Magnetic Resonance Imaging/methods
11.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37175391

ABSTRACT

The regional heterogeneity of microglia was first described a century ago by Pio del Rio Hortega. Currently, new information on microglia heterogeneity throughout central nervous system (CNS) regions is being revealed by high-throughput techniques. It remains unclear whether these spatial specificities translate into different microglial behaviors in vitro. We cultured microglia isolated from the cortex and spinal cord and analyzed the effect of the CNS spatial source on behavior in vitro by applying the same experimental protocol and culture conditions. We analyzed the microglial cell numbers, function, and morphology and found a distinctive in vitro phenotype. We found that microglia were present in higher numbers in the spinal-cord-derived glial cultures, presenting different expressions of inflammatory genes and a lower phagocytosis rate under basal conditions or after activation with LPS and IFN-γ. Morphologically, the cortical microglial cells were more complex and presented longer ramifications, which were also observed in vivo in CX3CR1+/GFP transgenic reporter mice. Collectively, our data demonstrated that microglial behavior in vitro is defined according to specific spatial characteristics acquired by the tissue. Thus, our study highlights the importance of microglia as a source of CNS for in vitro studies.


Subject(s)
Central Nervous System , Microglia , Animals , Mice , Microglia/metabolism , Neuroglia , Spinal Cord , Phagocytosis/physiology , Mice, Transgenic
12.
Pharmaceutics ; 15(5)2023 May 21.
Article in English | MEDLINE | ID: mdl-37242797

ABSTRACT

The failure of axons to regenerate after a spinal cord injury (SCI) remains one of the greatest challenges in neuroscience. The initial mechanical trauma is followed by a secondary injury cascade, creating a hostile microenvironment, which not only is not permissive to regeneration but also leads to further damage. One of the most promising approaches for promoting axonal regeneration is to maintain the levels of cyclic adenosine monophosphate (cAMP), specifically by a phosphodiesterase-4 (PDE4) inhibitor expressed in neural tissues. Therefore, in our study, we evaluated the therapeutic effect of an FDA-approved PDE4 inhibitor, Roflumilast (Rof), in a thoracic contusion rat model. Results indicate that the treatment was effective in promoting functional recovery. Rof-treated animals showed improvements in both gross and fine motor function. Eight weeks post-injury, the animals significantly recovered by achieving occasional weight-supported plantar steps. Histological assessment revealed a significant decrease in cavity size, less reactive microglia, as well as higher axonal regeneration in treated animals. Molecular analysis revealed that IL-10 and IL-13 levels, as well as VEGF, were increased in the serum of Rof-treated animals. Overall, Roflumilast promotes functional recovery and supports neuroregeneration in a severe thoracic contusion injury model and may be important in SCI treatment.

13.
Magn Reson Med ; 90(2): 539-551, 2023 08.
Article in English | MEDLINE | ID: mdl-37036367

ABSTRACT

PURPOSE: Enabling fast and accessible myocardial T1 mapping is crucial for extending its clinical application. We introduce Open-MOLLI-SMS combining simultaneous multi-slice (SMS) with auto-calibration and variable-rate selective excitation (VERSE)-multiband pulses to obtain all slices in a fast single-shot T1 mapping sequence. METHODS: Open-MOLLI-SMS was developed by integrating SMS with the open-source method Open-MOLLI previously implemented in Pulseq. Three methods were integrated for Open-MOLLI-SMS: (1) auto-calibration blip patterns to ensure consistency between the data and coil information; (2) a blipped-balanced SSFP (bSSFP) readout to induce controlled aliasing in parallel imaging shifts without disturbing the bSSFP frequency response; and (3) a VERSE-multiband pulse for minimizing the achievable TR and the specific absortion rate (SAR) impact of SMS. Two (SMS2) or three (SMS3) slices were excited simultaneously and encoded with an in-plane acceleration factor of 2. Experiments were performed in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom and five healthy volunteers. RESULTS: Phantom results show accurate T1 estimates for reference values between 400 to 2200 ms. Artifacts were visible for Open-MOLLI-SMS3 but not replicated in vivo. In vivo Open-MOLLI-SMS (T1 SMS2 = 993 ± 10 ms; T1 SMS3 = 1031 ± 17 ms) provided similar values to mean T1 single-band Open-MOLLI estimates (T1 Open-MOLLI = 1005 ± 47 ms). Open-MOLLI-SMS2 provided the closest estimates to the reference. CONCLUSION: This proof-of-principle implementation study demonstrates the feasibility of speeding up T1 -mapping acquisitions and increasing coverage by combining auto-calibration strategies with a blipped-bSFFP readout and VERSE multiband RF excitation pulses. The proposed methodology was built on the Open-MOLLI mapping sequence, which provides a fast means for prototyping and enables open-source sharing of the method.


Subject(s)
Image Interpretation, Computer-Assisted , Myocardium , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Acceleration , Reproducibility of Results , Heart/diagnostic imaging
14.
Data Brief ; 46: 108809, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36569535

ABSTRACT

Spinal cord injury (SCI) leads to severe functional deficits. Currently, there are no available pharmacological treatments to promote neurological recovery in SCI patients. Recent work from our group has shown that a baclofen treatment can promote functional recovery after a compression SCI in mice [1]. Here, we provide transcriptomic (RNA-seq) data from adult mouse spinal cords collected 7 days after a compression SCI and baclofen (vs vehicle) administration. The Illumina NovaSeq 6000 platform was used to generate the raw transcriptomic data. In addition, we also present bioinformatic analyses including differential gene expression analysis, enrichment analyses for various functional annotations (gene ontology, KEGG and BioCarta pathways or InterPro domains) and transcription factor targets. The raw RNA-seq data has been uploaded to the NCBI Sequence Read Archive (SRA) database (Bioproject ID PRJNA886048). The data generated from the bioinformatic analyses is contained within the article.

15.
Spine J ; 23(3): 379-391, 2023 03.
Article in English | MEDLINE | ID: mdl-36155240

ABSTRACT

BACKGROUND CONTEXT: Traumatic spinal cord injury (SCI) leads to severe motor and sensory functional impairments that affect personal and social behaviors. Medical advancements have improved supportive therapeutic measures for SCI patients, but no effective neuroregenerative therapeutic options exist to date. Deficits in motor function are the most visible consequence of SCI. However, other complications, as spasticity, produce a significant impact on SCI patient's welfare. Baclofen, a GABA agonist, is the most effective drug for spasticity treatment. Interestingly, emerging data reveals that baclofen can also play a role on neuroprotection and regeneration after SCI. PURPOSE: The goal of this study was to understand the potential of baclofen as a treatment to promote recovery after SCI. STUDY DESIGN: We used a pre-clinical SCI mouse model with the administration of baclofen 1 mg/Kg at different time-points after injury. METHODS: Behavior analysis (locomotor and bladder function) were performed during nine weeks of the in vivo experiment. Afterwards, spinal cords were collected and processed for histological and molecular analysis. RESULTS: Our data showed that baclofen leads to locomotor improvements in mice when its administered acutely after SCI. Moreover, baclofen administration also led to improved bladder function control in all experimental groups. Interestingly, acute baclofen administration modulates microglia activation state and levels of circulating chemokines and cytokines, suggesting a putative role of baclofen in the modulation of the immune response. CONCLUSIONS: Although further studies must be performed to understand the mechanisms that underlie the functional improvements produced by baclofen, our data shed light into the pharmacological potential of baclofen to promote recovery after SCI. CLINICAL RELEVANCE: Our outcomes revealed that baclofen, a well-known drug used for spasticity management, improves the motor performance after SCI in a pre-clinical animal model. Our data opens new avenues for pharmacological strategies design to promote SCI recovery.


Subject(s)
Baclofen , Spinal Cord Injuries , Mice , Animals , Baclofen/pharmacology , Baclofen/therapeutic use , Spinal Cord Injuries/complications , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Recovery of Function
16.
Phys Med ; 104: 160-166, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36463580

ABSTRACT

PURPOSE: Patient-specific information on the depth of Axillary Lymph Nodes (ALNs) is important for the development of new diagnostic imaging technologies, e.g. Microwave Imaging (MWI), aiming to assess the diagnosis of ALNs during breast cancer staging. Studies about ALNs depth have been presented for treatment planning, but they lack information on sample size and usability of the data to infer the depth of ALNs. The aim of this study was to create a mathematical model that can be used to predict a depth interval where level I ALNs are likely to be located. METHODS: We extracted biometric features of 98 patients who underwent breast Magnetic Resonance Imaging (MRI) to train two types of regression models. We then tested different combination of features to predict ALNs depth and found the best predictor. The final prediction models were then implemented in an algorithm used for MWI and tested with anthropomorphic phantoms of the axillary region. RESULTS: Body Mass Index (BMI) was the feature with best performance to predict ALNs depth with coefficient of determination (R2) ranging from 0.49 to 0.55 and Root Mean Squared Error (RMSE) ranging from 0.68 to 0.91 cm. The proposed model showed satisfactory results in microwave images of patients with different BMIs. CONCLUSIONS: The presented results contribute to the development of reconstruction algorithms for new imaging technologies and to the assessment of ALNs in other medical applications.


Subject(s)
Microwave Imaging , Humans
17.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430308

ABSTRACT

Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.


Subject(s)
Spinal Cord Injuries , Humans , Nerve Regeneration/physiology , Recovery of Function/physiology , Neuroprotection
18.
Opt Lett ; 47(15): 3948-3951, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35913355

ABSTRACT

In this Letter we present a discrete modulated, continuous variables quantum key distribution implementation using two probabilistically shaped, 128-symbol, amplitude and phase shift keying constellations. At Bob's detection side, a polarization diverse, true heterodyne receiver architecture is implemented for symbol recovery. We demonstrate experimentally that our system is capable of achieving security against collective attacks, while using accessible, telecom-grade material, and of functioning for an indefinitely long period of time at distances in excess of 185 km, in the asymptotic regime.

19.
Sci Rep ; 12(1): 6135, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414093

ABSTRACT

Optical homodyne detection is widely adopted in continuous-variable quantum key distribution for high-rate field measurement quadratures. Besides that, those detection schemes have been being implemented for single-photon statistics characterization in the field of quantum tomography. In this work, we propose a discrete-variable quantum key distribution (DV-QKD) implementation that combines the use of phase modulators for high-speed state of polarization (SOP) generation, with a conjugate homodyne detection scheme which enables the deployment of high speed QKD systems. The channel discretization relies on the application of a detection threshold that allows to map the measured voltages as a click or no-click. Our scheme relies also on the use of a time-multiplexed pilot tone-quantum signal architecture which enables the use of a Bob locally generated local oscillator and opens the door to an effective polarization drift compensation scheme. Besides that, our results shows that for higher detection threshold values we obtain a very low quantum bit error rate (QBER) on the sifted key. Nevertheless, due to huge number of discarded qubits the obtained secure key length abruptly decreases. From our results, we observe that optimizing the detection threshold and considering a system operating at 500 MHz symbol generation clock, a secure key rate of approximately 46.9 Mbps, with a sifted QBER of  [Formula: see text] over 40 km of optical fiber. This considering the error correction and privacy amplification steps necessary to obtain a final secure key.

20.
Opt Express ; 30(5): 6907-6920, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299465

ABSTRACT

Long-term quantum key distribution (QKD) using polarization encoding requires a random drift compensation method. We propose a method to compensate any state of polarization based on the quantum bit error rate (QBER) of two states from two non-orthogonal mutually unbiased bases. The proposed method does not require dedicated equipment, and through a simple but highly efficient feedback loop it compensates the polarization random drift suffered by photons while transmitted over the optical fiber quantum channel. A QBER lower than 2% was observed even considering imperfect single photon detectors. Besides, we verify a 82% secret key rate generation improvement in a finite-key size BB84 implementation for a 40 km fiber-optics quantum channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...